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Abstract

This paper presents a new method for 3D object localization from
a single image. It is known that single camera provide 2D image
data, annihilating valuable 3D information about object and its
localization in space. The main new idea is to match 2D im-
age gradient to the reprojection of 3D curvature to retrieve ob-
jects position relative to the camera. The object parameters are
a-priori known and modelled by SuperQuadrics (SQ) that en-
able the calculation of the analytical form of curvature. The im-
age processing stage includes object detection and segmentation
by the Histogram of Oriented Gradients (HOG) algorithm. The
method proposed uses the dependencies between SQ curvature
and image gradient also considering the illumination model and
object contour embedded in a proper cost function. To manage
local minima we propose the use of particle swarm optimization
(PSO).

Keywords: SuperQuadrics, single camera, 3D object localiza-
tion, Histogram of Oriented Gradients (HOG), curvature match-
ing, and particle swarm optimization (PSO).

1. INTRODUCTION

Object localization is an important task of computer vision and
robotics with many applications in the fields of autonomous-
guided vehicles, robot picking and manipulation, augmented re-
ality, non-contact measurement, etc. In recent years, thanks to the
increasing interest in these fields, some different approaches have
been proposed. This work presents a new and effective method
of object localization by matching image properties acquired by
a single CCD to object curvature in 3D whose model is obtained
in analytical form by SuperQuadrics. There are some papers re-
lated to the pose estimation with SQ [1, 3, 14], but all of them
match 3D range data (point cloud) to SQs models. On the one
hand this approach becomes very efficient and robust to outliers
[22], but on the other hand it requires 3D depth cameras, lasers
rangefinders or multicamera setup. Other related papers focus
on the pose estimation from a single image. Such papers can
be divided into two main groups according to their main model
descriptors[8]: the first uses the model edges (wireframes), the
second spatial localized model features (regions). The main idea
of the edge-based methods like [5, 9, 15] is to reproject a model
contour on the gradient image. These methods are very time ef-
ficient and can be used also for object tracking, but the object’s
profile is often strongly varied along the edges due to e.g. clutter,
shading, and texture. For these reasons, the edge detection is usu-
ally performed on the maximal image gradient. The region-based
methods such as [24, 21] rely on the homogeneity of spatially lo-
calized features (e.g. RGB values, curvatures, etc.). The assump-
tion is that the features of all pixels of a region are distributed
with statistical independence according to the same probability
density function. Often this assumption leads to incorrect re-
sults if e.g. the distributions of RGB values of foreground and
background depend on the object location within the image. Fus-
ing edge-based and region-based approaches gives a more effec-
tive and robust way for objects segmentation and matching [10].
Other works have been proposed to retrieve 3D information from
set of images like [4]. In this case object identification and 3D
parameters are obtained from SIFT features. The model is stored

with a sample image that is correlated to the real object. This
method gives good results with variegated texture.

SuperQuadrics are an extension of basic quadric surfaces,
which were introduced in computer vision by Alan Barr [2].
These mathematical functions allow the represention of a pretty
high number of elementary solids, e.g. sphere, box, cylinder,
toroids. Advantages of this formulation are compactness and its
closed-form mathematical expression. Furthermore, SQ can be
roughly described as deformation of a sphere so they are contin-
uous surfaces, even through edges.

Histogram oriented gradient (HOG) is able to retrieve objects
in the picture. It is a stochastic algorithm that uses the distribution
of intensity gradients for object detection. This method has been
first introduced to solve the problem of pedestrian identification
in static images [17, 18]. The algorithm focuses on finding the ro-
bust features descriptor of human model, maintaining invariance
to a wide variety of articulated pose minimizing the influence of
background and illumination. HOG processes a sample image
comparing it with a inner object model. It is obtained through a
training session with several different samples of the object ac-
quired from different points of view. All data are collected for
training support vector machine that compares the sample im-
age with its model. The output is the positive detection status
and a rough localization of the object in the image plane. We
propose a novel method of object detection and localization that,
exploiting SQ analytical formulation, implements curvature re-
projection keeping into account contours, edges and region prop-
erties at once. Detection is obtained using state of the art HOG
algorithm. With this approach we rely on a wider set of infor-
mations than just edges or key points as traditional model based
approaches.

2. ALGORITHM OUTLINE

The algorithm (1) starts with the HOG object detection. The re-
sult is a detection window on the acquired image containing the
object. This defines a lower and an upper bounds for the opti-
mizer research domain. Then a first pose guess is generated by
a transformation matrix applied to the a-priori known SQ-model.
From analytical SQ formulation the curvature, the normals and
the lighting model are computed and reprojected onto the image
to evaluate the level of matching with image features (gradients)
by means of a properly defined cost function. Until the overall
cost exceeds a certain threshold, the optimization process contin-
ues, when the threshold is reached, object localization is returned.

3. OBJECT DETECTION USING HISTOGRAMS
OF ORIENTED GRADIENTS

This work focuses on the estimation of the object pose and
location with respect to the camera. The first stage of image
processing is the HOG object detection and identification of the
Region Of Interest (the Detection Window). Then the resulting
window is used to set the initial guess on object location for
the optimizer initialization). HOG involves two main phases:
features extraction and learning.
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Figure 1: The flowchart of the object localization algorithm from
static images.

3.1 Features extraction

The object images are normalized (e.g. by gamma normaliza-
tion) and then their gradients magnitude and orientation evalu-
ated. The detection window is divided into sub cells. The his-
togram of oriented gradients, weighted according to the magni-
tude of the gradients intensity, is then computed. Data are col-
lected into Blocks with an additional normalization to provide
better illumination invariance. To complete the dataset of positive
images, also negative ones are processed (i.e. images without the
target). After that HOG data are collected for all the detection
windows and then feature vectors (both negative and positive im-
ages) are combined together to be processed by the support vector
machine (SVM) for the Learning phase.

3.2 Learning phase

Images from the dataset created in the preview phase are encoded
as spatial feature vectors. This set is processed into a binary clas-
sifier for object / non-object class identification. At this stage
the detection/recognition is not robust as a high number of false
positives can be obtained from the first experimental dataset, i.e.
the non-object class in not properly acquired/described. To re-
duce the false positive detection the second sample dataset with
only negative images is prepared and processed. In this way all
positive results in this sequence are false positive, so they can
be re-introduced in the classifier as the hard negative example to
perform better non-object class description. A new classification
is finally obtained using the two classes. False positives are now
reduced by an order of magnitude.

3.3 HOG implementation

The HOG implementation is the same as described in [19]. Some
of the improvements comprised the UoC-TTI LSVM-MDPM

entry in the PASCAL VOC 2009 comp3 challenge [6]. The
dataset chosen concerned simple objects like a box (219 x 120 x
230 mm) and a cylinder (190 x 90 mm). Training is performed
with different images of the same object (80 positives image and
30 negatives for each model). As shown in figure 2 the final
HOG result is a bounding box around the detected object. This
information provides the segmentation of the region of interest
from the background to initialize the optimizer.

Figure 2: The set of some training images (for a cylinder and
a box) and the final results of HOG detection (the red rectangle
surrounding the objects for test images).

This kind of segmentation provides information only into 2D
domain, whereas pose and/or depth information are not esti-
mated. Anyway this stage allows concentrating the optimization
algorithm attention only on a limited zone of the image thus
speeding up the subsequent steps.

4. SUPERQUADRICS FORMULATIONS

SQ surfaces can be obtained as spherical product of two paramet-
ric curves.
Given two parametric curves:

h(ω) =

[
h1(ω)
h2(ω)

]
� π ≤ ω ≤ π (1)

m(η) =

[
m1(η)
m2(η)

]
� π

2
≤ η ≤ π

2
(2)

where ω and η are spherical coordinates respectively for the hor-
izontal and vertical curves. Spherical product is defined as:

m(η)⊗ h(ω) =



m1(η) · h1(ω)
m1(η) · h2(ω)

m2(η)


 (3)

For SQ-representation the known explicit formula [11] is used:


x
y
z


 =



a1 cosε1 η cosε2 ω
a2 cosε1 η sinε2 ω

a3 sinε1 η


 (4)

where x, y, z - SQ coordinate system
a1, a2, a3 - scale parameters of the object;
ε1, ε2 - object shape parameters;
ω, η - spherical coordinates;

The implicit SQ formulation is anyway more suitable for mathe-
matical modeling:

F(x, y, z) =

(( x
a1

)2/ε2
+
( y
a2

)2/ε2
) ε2

ε1

+
( z
a3

)2/ε1
(5)
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4.1 Curvature estimation

As shown in (3), if the generative curves of the spherical prod-
uct are continuous, the surface created is also continuous. This
means that it is possible to use differential geometry to retrieve
curvature information about the parametric surface. Definition
(5) describes the different surfaces, so that, according to the scale
and shape parameters, every point on the shape is analytically
known. The leading idea of this work is to use the relation be-
tween the curvature and the object change of appearance. For
this reason the accurate evaluation of the curvature is crucial. In
this work we followed the approach of Ron Goldman’s work on
the calculation of surfaces curvature [7], especially focusing on
mean curvature and normal directions.

4.1.1 Identification of the Normals

Normal can be easily calculated starting from the evaluation of
the gradient of the parametric surfaces. Since the gradient of
F(x, y, z) is perpendicular to the level curves F(x, y, z) = const,
the gradient ∇F is parallel to the normal of F(x, y, z) = 0.
Therefore we have the following formulas:

N(x, y, z) =
∇F(x, y, z)
|∇F(x, y, z)| (6)

where N is a set of unitary vectors in normal direction.

4.1.2 Mean Curvature

Usually mean curvature is taken as the divergence of unit vector:

KM(x, y, z) = −∇ ·N(x, y, z) (7)

This formulation is very compact, but it may be computationally
hard to handle so therefor formulation is suggested:

KM =
∇F ·H(F ) · ∇FT − |∇F |2Trace(H)

2|∇F |3 (8)

4.2 SuperQuadrics Representation

The representation of SuperQuadrics is obtained from its explicit
formula 4. According with the scaling and shape parameters it
is possible to obtain the coordinates of each point by varying
the spherical coordinates ω and η. Unfortunately for an equally
spaced sampling of these coordinates does not correspond and
equally spaced sampling of x, y, z. To take this problem we fol-
lowed the approach described in [16]. The idea is to model the
surfaces like Superellipsoids to obtain a linear arc-length param-
eterization in order to provide a regular sampling along the sur-
face.
The following formulation regards to equally spaced samples
along the transversal arc η:





xs = x (1 +
k1
c2
z2) (1 +

k2
b2T

y2)

ys = y
b aT
a bT

(1 +
k1
c2
z2) (1 +

k2
a2T

x2)

zs = z (1 +
k1
a2
a2T )

(9)

where: 



θT = arcsin( z
c
)

aT = a · cos(θT )
bT = b · sin(θT )

(10)

With this representation an equal distributed surface is available.

Referring to figure 3 the number of points for the first two rep-
resentations is the same, but their distributions are much more
homogeneous.

(a) (b) (c)

Figure 3: The Superquadric representations: (a) - mapping from
the points calculated by explicit SQ form; (b) - mapping from a
transformed ellipsoid with algebraic manipulations (9); (c) - the
surface mapping.

5. MATCHING ALGORITHM

The image is elaborated by the object detection algorithm (par.
3.3) which detects the object on the image plane defining a confi-
dence region by means of bounding box. This information is the
starting point to retrieve the object position in 3D. By means of
the bounding box dimensions is in fact possible to roughly esti-
mate the distance.
Position and orientation of the object in 3D space relative to the
camera is parametrized with a homogeneous transformation ma-
trix containing the rotation matrix R and the displacement from
the origin T.

[
PW

3×1

1

]
=

[
R3×3 T3×1

0 1

] [
PSQ
3×1

1

]
(11)

Using a pinhole camera model with lens distortion compensation
[12], it is possible to re-map the model from 3D space to image
coordinates. In other words, starting from the 3D points with
their attributes (e.g. curvature, normals, and light appearance) it
is possible to match with the corresponding candidate pixel that
is a function of the coordinates transformation matrix. The goal
is to find the homogeneous transformation that best matches the
above attributes.

5.1 Curvature matching

It is well known that strong variations on images gradients are
located along edges and corners. Methods that rely only on high
image gradients along the edges while neglecting the small varia-
tions inside the surfaces, become instable if borders are partially
occluded. As already said the SQ formulation allows to obtain
a continuous surface, so that edges and corners are modelled as
local high curvature. According to the edge based methods this
high curvature can be related with high gradient intensity, on the
other side also low curvature can be connected with low gradient
magnitude regions. With our method is possible to use both in-
formations. From equation (8) it is calculated the mean curvature
for each sampled point (9). In the image domain it is possible to
evaluate the gradient. The distance between gradient and curva-
ture images is evaluated as vector norm of the matrix difference.
The lower the distance, the better the matching.

Ef =

n∑

i=1

||GN (i)−KN (i)||2

n
+ ||GN −KN ||∞ (12)

GN and KN are the normalized values for the mean curvature
and the gradient. The norms to infinity count the maximum dis-
placement between curvature and gradient.
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5.2 Light appearance matching

Directions of normals are known for each point from equation
(6). If it is also supposed known the position of the light source
that makes the object illumination appearance available. The
known light position provides the information about bright and
dark sides. We used the light model of Phong [20]. It provides a
spot light source and includes a combination of diffuse and spec-
ular reflection.

Ip = kaia + (kd(L ·N)id + ks(R ·V)nis)
R = 2(L ·N)N− L

(13)

ka, kd, ks are the ambiance, diffuse and specular constants; ia,
id and is are the respective light intensities. L is the light direc-
tion vector, R is the specular reflection vector, V is the viewer
direction, and N is the surface normals. With this information
is possible to compare the expected illumination appearance with
the pixel intensities. This time the key idea is to compute the
convolution directly among the images. Illumination model (13)
is built so as illumination values Ip span from 0 to 1, same as
for the gray levels Lg of the normalized image. To compute the
convolution the mean value is subtracted in order to have a zero-
centred distribution. The value for the normalized convolution is
expressed by the formula:

Cf =

n∑

i=1

INp (i) · LN
g (i)

||INp ||2 · ||LN
g ||2

; (14)

The higher the convolution the better the matching.

5.3 Normal and gradient alignment

Another method to improve the matching between the static im-
age and the re-projected model is to check the alignment of nor-
mals onto image plane with the gradient pixels orientation.
It is well known that along edges the gradient magnitude is higher
and its orientation is orthogonal to the border. Normal directions
are 3D data; anyway if we project, as in the case of the sampled
3D SQ model, we obtain normals on the image plane. Normals
will have the same orientation as the image’s gradient.
With this assumption the matching is computed by the angle be-
tween silhouette normal Vn vectors on the image and the gra-
dients orientation Vg. If the scalar product is considered, the
cosine of θng is close to 1:

Vf =
1

n

n∑

i=1

If(| cos(θng(i))| > 0.9, 1) (15)

Quality of matching is estimated counting the number of
approximately parallel vectors (15).

6. OPTIMIZATION

All the contributions (12 - 14 - 15) are mixed into cost function
(18). Practically we recognized that the problem is multi-modal
so square regression algorithm and other gradient based tech-
niques are not well suited as far as their result is dependent
on the initial conditions that easily leads to missing the global
minimum. That is why we implemented PSO (Particle Swarm
Algorithm) to randomize the starting point [13].
The algorithm starts form a set of agents, call particles, that move
along the trust region. This region is initialized by the centroid
of HOG’s detection window Xn and its area A. From this data
we can infer a guess position Xw for the object, with the formula:

Xw =
k

A



xn
yn
1


 (16)

where k is a fixed proportional factor. The reaching of minimum
is leaded by force F(s)

k that can be divided into two contributions.
The first is relative to cognitive behavior F

(s)
k (p

(s)
k ) focused on

the single particle experience (personal best p(s)). The second
is the social behavior, F(s)

k (gk) focused on the swarm attitude
(global best gk ). The update of particle’s position is obtained
through a velocity with the following expression:

v
(s)
k+1 = ω · v(s)

k + C1 r1(p
(s)
k − x

(s)
k )︸ ︷︷ ︸

F
(s)
k

(p
(s)
k

) Cognitive Term

+ C2 r2(gk − x
(s)
k )︸ ︷︷ ︸

F
(s)
k

(gk) Social Term

(17)
Where C1, C2 are the acceleration coefficients, ω is the inertial
weight, and r1, r2 are random variables; k is the iteration step
and (s) is particle’s index.
The goal is to achieve the transformation matrix M?. This rep-
resents the transformation from camera to object frames. Cost
contributions depend on the transformation of the SQ model onto
the image plane. Minimizing the cost function Fc we find itera-
tively the matrix M with the best matching.

M? = min
M

=⇒ Ef (M)

Cf (M) ·Vf (M)
(18)

The localization of the object is supposed on a plane known with
a non negligible level of accuracy. The camera position relative
to the plane is known by the calibration process by placing one of
the reference target acquisitions on the plane. Localization is per-
formed in xy direction and orientation around z-axis. Because of
plane’s uncertainty along z the search is allowed also along that
direction but for a limited displacement. The parameters that the
optimizer tries to retrieve are displayed in table 1, with the trust
region upper and lower bound settings.

As already stated, multi-modality introduces local minima is-

θz Xw Yw Zw

−π/2 Xw − |Xw| · 0.3 Yw − |Yw| · 0.3 Zw − 0.02
π/2 Xw + |Xw| · 0.3 Yw + |Yw| · 0.3 Zw + 0.02

Table 1: Optimization parameters initialization (first row is lower
bound, second row is upper bound). Angles are expressed in ra-
diants and translations - in meters.

sues. The use of normals alignment (15) and light (14) together
with curvature decrease the failure rate. Anyway there are still
situations in which the optimizer is “trapped” into a local min-
ima.

7. EXPERIMENTAL RESULTS

In this paragraph some results are shown with the aim to prove
detection correctness and to provide a quantitative estimation
of the localization accuracy in different conditions. We also
propose a comparison between our method and state of the art
algorithms that use RGB-d camera. For this we chose Microsoft
Kinect sensor for its high quality to cost ratio.

The setup was assembled with an RGB camera (1280 x 960) and
a Kinect sensor (ref. to figure 4 ). The camera was equipped
with a known position spot light. Both sensors were calibrated in
reference to the chessboard (origin on the top left corner). The
localization algorithm was limited to the plane estimated with the
calibration process.
A properly designed grid has been printed and used as a refer-

ence for calibration. This grid is arranged in 25 cells organized
with a fixed displacement and variable attitude. For each cell
we place the objects with a relative position accuracy of about 1
mm. We also know the absolute position with respect to the cam-
era and the Kinect thanks to the calibration. The localization’s
range is spanned from 2 to 3 m.
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Figure 4: Experiment setup layout, data are acquired both from
the camera and Kinect. Chessboard is used to estimate camera
and Kinect positions in order to provide the reference frame for
the localization.

Kinect uses IR structured light to provide full 3D data infor-
mation. From each snapshot it retrieves a corresponding points
cloud with colour information. The idea is to use the cloud of 3D
points to fit the SQ model.
A very common approach is to use robust fitting algorithm (e.g.,
RANSAC), anyway the results of these depend upon the number
of inliers and outliers allowed and its related parameters, this par-
ticularly when the number of outliers is large. To overcome this
is preferable to cluster the complete cloud of points to segment
only those corresponding to the object and then use a regression
algorithm to estimate a more accurate fitting over the selected
points.

First the initial cloud of points is processed with RANSAC to

Figure 5: Example of SuperQuadrics fitting with depth data.

delete those lying on the floor plane (green in the picture). Then
clustering of the 2 objects in the view is obtained with k-means.
For each cluster is performed a fitting with Levenberg-Marquardt.
Final results are shown in figure 5. Figure 6 presents some local-
ization results of objects in general positions and also with oc-
clusions. Figure 6 also presents different conditions, with known
light source and without. In the same figure are also reported
some local minima solutions. In those cases is possible to note
an overlap of the figure but the orientation is completely wrong
despite good normals alignment and curvature matching. Figure
7 shows the estimated uncertainty ellipses (green - for Kinect,
blue - for our method). Each experimental sample is computed
with respect to the reference positions of each SQ centre on the
reference grid. Y-direction is aligned with the camera/Kinect
axes. The ellipses are estimated using the k factor defined in
[23] with a confidence level of 95%. To quantify uncertainty
we report the eigenvalues along principal directions for each el-
lipse (values in mm) λB

1 = 18.85 and λB
2 = 27.23 (box) and

λC
1 = 11.35 and λC

2 = 13.55 (cylinder) for our localization re-
spect to λB

1 = 11.65 and λB
2 = 40.56 (box) and λC

1 = 13.83
and λC

2 = 47.05 (cylinder) . The figure 8 shows the depen-
dence of the optimized cost function values on the percentage
(relative) errors. Unfortunately we found no clear correlation be-
tween errors and cost function. This we believe is an important
point to further analyze in order to find an estimate of the actual
uncertainty directly from the final (optimized) value of the cost
function.

(a)

(b)

(c)

(d)

Figure 6: In (a) are presented some localization results in gen-
eral locations; in (b) the same is proposed for cylinders. In the
second picture a partially occluded scene is proposed while the
localization remains correct. In pictures (c) and (d) localization is
estimated without light informations. Obtained results are quite
good in (c), but in (d) the localization faces local minima prob-
lems which stuck the optimization.

8. CONCLUSION

The article presents an innovative approach for monocular ob-
ject localization. The object detection from the image has been
made with HOG algorithm in a pre-processing stage. Then 3D
localization is performed by a cost-function that considers: a) the
matching of the object reprojected curvature with the image gra-
dient; b) the convolution with object-Light appearance and the
image gray levels; c) the quantification of the reprojected con-
tours aligned with the image gradients. The 3D pose estimation
accuracy has been quantified with a calibration grid giving the
eigenvalues of the uncertainty ellipses identifying the dispersion
of data along principal directions. These data are also compared
to Microsoft Kinect. Our method gives an object localization ac-
curacy comparable and in some cases even better using only a
single camera. The algorithm is competitive in cluttered scenes
as it relies on the whole object in contrast to only edges as in the
case of edge/gradient methods. Figure 8 represent the limit of
detection: for box the percentage error is around 2-2.5% and for
cylinder is around 1.5%. Limitations are the knowledge of the
light direction and the homogeneity of the surface texture. Nev-
ertheless, in industrial fields for example, the method can cover a
broad spectrum of applications. Also outdoor, where Kinect can-
not be exploited, the use of a simple camera in combination to
our method could represent a good alternative. Optimization is a
tricky aspect. Especially the correct orientation retrieval generate
many minimal local problems (ref. figure 6.d). It is important
to point that the lowest values of the cost function always lead
to correct localization while higher values are correlated to local
minima. We are therefore confident that, automatizing the opti-
mization process, it is possible to cope with multi-modal prob-
lems.
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(a)

(b)

Figure 7: The comparison between the ellipses of uncertainty
(green - for Kinect, blue - for our method) for the box (a) and the
cylinder (b) localizations according to the reference (calibration)
grid.
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